Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Clinical Psychopharmacology and Neuroscience ; : 10-18, 2023.
Article in English | WPRIM | ID: wpr-966700

ABSTRACT

There is growing evidence that the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with increased risks of psychiatric sequelae. Depression, anxiety, cognitive impairments, sleep disturbance, and fatigue during and after the acute phase of COVID-19 are prevalent, long-lasting, and exerting negative consequences on well-being and imposing a huge burden on healthcare systems and society. This current review presented timely updates of clinical research findings, particularly focusing on the pathogenetic mechanisms underlying the neuropsychiatric sequelae, and identified potential key targets for developing effective treatment strategies for long COVID. In addition, we introduced the Formosa Long COVID Multicenter Study (FOCuS), which aims to apply the inflammation theory to the pathogenesis and the psychosocial and nutrition treatments of post-COVID depression and anxiety.

2.
Clinical Psychopharmacology and Neuroscience ; : 190-205, 2021.
Article in English | WPRIM | ID: wpr-897921

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) and intermittent theta-burst stimulation (iTBS) are evidenced-based treatments for patients with major depressive disorder (MDD) who fail to respond to standard first-line therapies. However, although various TMS protocols have been proven to be clinically effective, the response rate varies across clinical applications due to the heterogeneity of real-world psychiatric comorbidities, such as generalized anxiety disorder, posttraumatic stress disorder, panic disorder, or substance use disorder, which are often observed in patients with MDD. Therefore, individualized treatment approaches are important to increase treatment response by assigning a given patient to the most optimal TMS treatment protocol based on his or her individual profile. This literature review summarizes different rTMS or TBS protocols that have been applied in researches investigating MDD patients with certain psychiatric comorbidities and discusses biomarkers that may be used to predict rTMS treatment response. Furthermore, we highlight the need for the validation of neuroimaging and electrophysiological biomarkers associated with rTMS treatment responses. Finally, we discuss on which directions future efforts should focus for developing the personalization of the treatment of depression with rTMS or iTBS.

3.
Clinical Psychopharmacology and Neuroscience ; : 190-205, 2021.
Article in English | WPRIM | ID: wpr-890217

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) and intermittent theta-burst stimulation (iTBS) are evidenced-based treatments for patients with major depressive disorder (MDD) who fail to respond to standard first-line therapies. However, although various TMS protocols have been proven to be clinically effective, the response rate varies across clinical applications due to the heterogeneity of real-world psychiatric comorbidities, such as generalized anxiety disorder, posttraumatic stress disorder, panic disorder, or substance use disorder, which are often observed in patients with MDD. Therefore, individualized treatment approaches are important to increase treatment response by assigning a given patient to the most optimal TMS treatment protocol based on his or her individual profile. This literature review summarizes different rTMS or TBS protocols that have been applied in researches investigating MDD patients with certain psychiatric comorbidities and discusses biomarkers that may be used to predict rTMS treatment response. Furthermore, we highlight the need for the validation of neuroimaging and electrophysiological biomarkers associated with rTMS treatment responses. Finally, we discuss on which directions future efforts should focus for developing the personalization of the treatment of depression with rTMS or iTBS.

4.
Clinical Psychopharmacology and Neuroscience ; : 469-483, 2020.
Article in English | WPRIM | ID: wpr-832092

ABSTRACT

Omega-3 polyunsaturated fatty acids (or omega-3 PUFAs, n-3 PUFAs) are essential nutrients throughout the life span.Recent studies have shown the importance of n-3 PUFAs supplementation during prenatal and perinatal period as a potential protective factor of neurodevelopmental disorders. N-3 PUFAs have been reported to be lower in youth with attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and major depressive disorder (MDD).N-3 PUFAs supplementation has shown potential effects in the improvement of clinical symptoms in youth with ADHD, ASD, and MDD, especially those with high inflammation or a low baseline n-3 index. Moreover, it has been suggested that n-3 PUFAs had positive effects on lethargy and hyperactivity symptoms in ASD. For clinical application, the following dosage and duration are recommended in youth according to available randomized controlled trials and systemic literature review: (1) ADHD: a combination of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) ≥ 750 mg/d, and a higher dose of EPA (1,200 mg/d) for those with inflammation or allergic diseases for duration of 16−24 weeks;(2) MDD: a combination of a EPA + DHA of 1,000−2,000 mg/d, with EPA:DHA ratio of 2 to 1, for 12−16 weeks;(3) ASD: a combination of EPA + DHA of 1,300−1,500 mg/d for 16−24 weeks as add-on therapy to target lethargy and hyperactivity symptoms. The current review also suggested that n-3 index and inflammation may be potential treatment response markers for youth, especially in ADHD and MDD, receiving n-3 PUFA.

5.
Nutrition Research and Practice ; : 286-294, 2019.
Article in English | WPRIM | ID: wpr-760620

ABSTRACT

BACKGROUND/OBJECTIVES: Docosahexaenoic acid (DHA), an n-3 long chain polyunsaturated fatty acid (LCPUFA), is acquired by dietary intake or the in vivo conversion of α-linolenic acid. Many enzymes participating in LCPUFA synthesis are regulated by peroxisome proliferator-activated receptor alpha (PPARα). Therefore, it was hypothesized that the tissue accretion of endogenously synthesized DHA could be modified by PPARα. MATERIALS/METHODS: The tissue DHA concentrations and mRNA levels of genes participating in DHA biosynthesis were compared among PPARα homozygous (KO), heterozygous (HZ), and wild type (WT) mice (Exp I), and between WT mice treated with clofibrate (PPARα agonist) or those not treated (Exp II). In ExpII, the expression levels of the proteins associated with DHA function in the brain cortex and retina were also measured. An n3-PUFA depleted/replenished regimen was applied to mitigate the confounding effects of maternal DHA. RESULTS: PPARα ablation reduced the hepatic Acox, Fads1, and Fads2 mRNA levels, as well as the DHA concentration in the liver, but not in the brain cortex. In contrast, PPARα activation increased hepatic Acox, Fads1, Fads2 and Elovl5 mRNA levels, but reduced the DHA concentrations in the liver, retina, and phospholipid of brain cortex, and decreased mRNA and protein levels of the brain-derived neurotrophic factor in brain cortex. CONCLUSIONS: LCPUFA enzyme expression was altered by PPARα. Either PPARα deficiency or activation-decreased tissue DHA concentration is a stimulus for further studies to determine the functional significance.


Subject(s)
Animals , Mice , Brain , Brain-Derived Neurotrophic Factor , Clofibrate , Docosahexaenoic Acids , Fatty Acid Desaturases , Liver , Peroxisomes , PPAR alpha , Retina , RNA, Messenger
6.
Psychiatry Investigation ; : 142-145, 2015.
Article in English | WPRIM | ID: wpr-221374

ABSTRACT

Interferon (IFN)-alpha therapy for chronic hepatitis C virus (HCV) infection is frequently associated with major depressive episodes. Bupropion, a commonly used antidepressant agent, has recently found to have strong anti-inflammatory effects in animal models. Despite of the theoretical relevancy, the antidepressant effect of bupropion in IFN-alpha-induced depression has never been studied. Ten HCV patients with IFN-alpha-induced depression were recruited to receive 8-week bupropion treatment and were assessed every 2 weeks for depressive symptoms by the Hamilton rating scale for depression (HAMD) and somatic symptoms by the Neurotoxicity Rating Scale (NRS). Four of the 10 patients met the criteria for remission (total HAMD scores< or =7), and 5 patients met the criteria for response (at least 50% reduction in total HAMD scores). In addition, 5 patients had 50% decreases in NRS for neuropsychiatric symptoms. This preliminary open-label study suggests that bupropion is effective in treating IFN-alpha-induced depressive and somatic symptoms.


Subject(s)
Humans , Bupropion , Depression , Hepatitis C , Hepatitis C, Chronic , Interferons , Models, Animal
7.
Clinical Psychopharmacology and Neuroscience ; : 129-137, 2015.
Article in English | WPRIM | ID: wpr-162191

ABSTRACT

Psychiatric disorders in general, and major depression and anxiety disorders in particular, account for a large burden of disability, morbidity and premature mortality worldwide. Omega-3 polyunsaturated fatty acids (PUFAs) have a range of neurobiological activities in modulation of neurotransmitters, anti-inflammation, anti-oxidation and neuroplasticity, which could contribute to psychotropic effects. Here we reviewed recent research on the benefits of omega-3 PUFA supplements in prevention against major depression, bipolar disorders, interferon-alpha-induced depression patients with chronic hepatitis C viral infection, and posttraumatic stress disorder. The biological mechanisms underlying omega-3 PUFAs' psychotropic effects are proposed and reviewed. Nutrition is a modifiable environmental factor that might be important in prevention medicine, which have been applied for many years in the secondary prevention of heart disease with omega-3 PUFAs. This review extends the notion that nutrition in psychiatry is a modifiable environmental factor and calls for more researches on prospective clinical studies to justify the preventive application of omega-3 PUFAs in daily practice.


Subject(s)
Humans , Anxiety Disorders , Anxiety , Bipolar Disorder , Depression , Fatty Acids, Unsaturated , Heart Diseases , Hepatitis C, Chronic , Mortality, Premature , Neuronal Plasticity , Neurotransmitter Agents , Psychotic Disorders , Secondary Prevention , Stress Disorders, Post-Traumatic
SELECTION OF CITATIONS
SEARCH DETAIL